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A simple relativistic theory of gravitation 

C. J. COLEMAN 
Department of Mathematics, Imperial College of Science and Technology, 
London S.W.7 
MS. receiued 24th March 1971 

Abstract. It  is shown that a particular theory with a Lorentz-invariant scalar 
potential 4 and a simple gravitational metric involving 4 leads to the same 
results for the three Einstein tests as General Relativity. 

1. Introduction 
In  recent years there has been a revival of interest in relativistic theories of 

gravitation other than General Relativity, notably those of the Lorentz-invariant 
type. Efforts have been directed towards comparing results obtained to order 1/c2 
from these theories with the three classical tests of General Relativity. In a detailed 
comparative analysis by Whitrow and Murdoch (1965) it was shown that a generaliza- 
tion of Nordstrom’s (1912) scalar theory that included as special cases theories due to 
Littlewood (1953), Bergmann (1956) and others gave the same result as General 
Relativity for the gravitational red-shift, and for a particular value of an arbitrary 
parameter the same formula as General Relativity for the advance of perihelion in the 
one-body problem. I n  all cases of this scalar theory, however, a zero value was 
obtained for the gravitational deflection of light. The only theories (scalar, vector and 
tensor) studied by Whitrow and Murdoch that led to the same result as General 
Relativity for all three Einstein tests were the tensor theories of Birkhoff (1943) 
and Whitehead (1922), apart from a theory due to Kustaanheimo (1957) that had so 
many adjustable parameters that agreement could be imposed ad hoc. 

I t  is the purpose of this paper to present a simple Lorentz-invariant scalar theory 
of gravitation that leads to the same results as General Relativity for the three classical 
Einstein tests. The theory has some similarity to Whitehead’s theory, but is much 
simpler due to its scalar nature. The object of studying this theory is that, although 
as far as the three Einstein tests are concerned it is indistinguishable from General 
Relativity, it is a much simpler theory, since it involves only one instead of ten 
gravitational potentials, and therefore merits attention. 

2. Formulation of the theory 
I n  the theory to be considered all effects are transmitted through space with 

velocity c (the velocity of light in vacuo). The paths of material particles satisfy the 
variational principle 

where the ‘gravitational metric’ is given by 
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and the potential 4 satisfies the Lorentz-invariant wave equation 

The  paths of photons are given by 

du = 0. (2.4) 

3. Motions in a plane 
The static point-source solution of (2.3) is given by + = X/Y, where ct is constant 

and Y is the radial coordinate. If we consider the weak field solution for large Y, the 
gravitational metric (2.2) reduces to 

if terms in l / r2  and l/rc2 are neglected. Hence, on using (2.1) with this form of d o  
we obtain the classical Newtonian orbit for a gravitating test-particle if we take 
ct = - GM/c2, where M is the mass of the source and G the constant of gravitation. 
Consequently, we take 

G M  + =  -- 
YC2 a 

As is usual in the field of a point-source, a free particle moves in a plane. Hence, to 
study its motion, we can take (2.2) in the simplified form 

e-26 
do2 = $6 dt2 - - 

c2 
( dr2 + r2 de2), (3.2) 

If we denote differentiation with respect to u by a dot, the motion of a free particle 
may be described (cf Synge 1952) by 

(3.3) 

(3.4) 
I t  follows from equations (3.3) and (3.1) that 

where h, K are constants. 

4. Advance of perihelion of orbit of a slowly moving particle in a weak field 
From (3.1), (3.5) and (3.6) it follows that 

2GM t = ek exp(7) 

2GM 
i 2 e  = ekh exp( - (4.2) 
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If the particle is slowly moving, for large Y it follows from (2.2) and (4.1) that, writing 
v = dr/dt 

2 G:W [2GM + ... - 2" (1 + + ... 
c2 Y C 2  

and hence t 2  N 1 and so ek N 1. Writing U = l / r ,  we obtain from (3.4), (4.1), and 

2GM 
(4.2) 

which implies that 
2G.U 

and hence 

If we differentiate equation (4.3) with respect to U ,  we find that 

and hence to order 1/c2 
d2u G4U 6G2M2 -+u  =---+- 
de2 h2 h2c2 U .  (4.4) 

From equation (4.4) we deduce that 
Gk? 6G2M2' 6G21v2 l i 2  

=-(I- h2 -,) h2c2 [ i + r c o s j ( i -  -) h2c2 (e-e,))] 
where E ,  8, are constants of integration. T o  order 1/c2, this gives 

for which we have an advance of perihelion 6nG2iW2/h2c2 per revolution, which to 
order 1/c2 is the same value as given by General Relativity. 

5. Gravitational deflection of light 

it follows from (3.1) and (3.2) that 
Under the assumption that light moves in accordance with the condition d a  = 0, 

2GM . 1 2GM o = exp( - --) t 2  - - exp (-1 (P + r 2 4 2 ) .  
Y C 2  c2 YC2 

On using ( 3 4 ,  and (3.6) with the form of #J given by (3.1), equation (5.1) reduces to 

4GM 

On differentiating with respect to U and neglecting terms of higher order than the 
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second in llc, we find that 
, I  

d2u 2GM 
+ U  = -. - 

' de2 h2 
The solution of (5.2) is 

1 cos ( e  - e,) 

( 5 . 3 )  

where E ,  Bo are constants of integration. This is the equation of a hyperbola, since 
for the path to be almost a straight line the eccentricity E B 1, The angle between the 
asymptotes is approximately Z j t .  The  perihelion distance, R is given by 8 - 0 ,  = 0, 
so that 

1 2GiV 2 G M  
R h2 

E .  _ -  - h " ( 1  + E )  N - 

Since h = Rczxp(2GMiRc2), given by taking dzi/de = 0 when Y = R in 
equation (5.2), it follows that the angular deflection of a light-ray from infinity that 
passes at a distance R from the centre of force is 

2 4G1VlR 4 G M  
E h2 c2R 
- w - = -  

which is the same result as obtained in General Relativiti. 

6. Conservation principles and the gravitational red shift 
From equation (2.1) we see that 

e-2@ dr  dr 
c2 da 'da  

1 = e2d ($, - - - -, 

Since the yelocity 5 of a photon in a gravitational field 4 is given by E = c e2@, it 
follows that 

2 

c2 = 2 2  e-26 ($1 - - 2  e-zd ('I2 (6.1) 

where z' = Idr/dti. If we associate with any particle a constant m,, called its proper 
mass, then from (6.1) we have 

If we consider a region of space so small that a particle moving in a gravitational field 
in this region can be said to be travelling approximately along a straight line with 
constant velocity (assuming continuity of the particle path), the effects of gravity in 
this small region can be neglected and we can appeal to Special Relativity. Hence, 
according to an observer in an inertial frame in this region the inertial mass m of 
the particle will be related to its proper mass by the formula 

where c' is the velocity of light in this region. Hence 

m2P-m2v2 = constant (6.3) 
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in this region. We now assume (6.3) to hold generally, and consequently we must 
have 

if equations (6.2) and (6.3) are to be compatible. On introducing the four-momentum 
defined by P = (me, mv),  it follows that P.P = constant. 

We define measure of energy E in the usual way by 

wherep = mv, the integral being taken along the particle path from some conveniently 
chosen initial level. On differentiating (6.3) with respect to t along the particle path 

E- -0- = 0 .  
d(me) d(mv) 

dt dt 

Hence the energy is given by j? d(mE), taken from some chosen level. In  the case of 
no field (i.e. + -+ 0) 

do2 = dt2- - dr.dr 
1 

C2 

and the energy from some chosen initial level is given by 

E =  d mO- .r 3.1 
The initial level is chosen to be such that 

dt 
du 

E = m , - c 2  

in order to correspond with Special Relativity. For the case of a free particle moving 
under no field, the equations of motion are given by 

8 l d o  = 0 

where 
1 

C 2  
do2 = dt2- -dr.dr. 

Consequently, from equations (3.5) we deduce that dtlda = ek and hence 

E = m, ekc2. 

In  the case of a field with potential given by (3.1) it follows that on using (4.1) in 
formula (6.4), we get 

2GM 
E d(?m) = m0c2 ek exp 
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Hence we have the formula 

E = -wi0c2ek exp - - ( ::I + Eo 

for the energy of the particle. From the above considerations in the case of no field, 
it follows that as r + CO, we must have E +moc2 ek. Hence it follows that 
E ,  = 2nzoc2 ek. On neglecting terms in powers of GiW/YC2 higher than the first, we 
obtain the formula 

E = moc2ek 1 + - ( ::I 
To obtain the gravitational red-shift formula in this theory, we assume that we 

can apply formula (6.6) to a photon of energy hv, where v is the frequency of the 
photon and h Planck's constant. Tf vy. denotes the standard frequency of any photon 
emitted at distance Y from the centre of the field and v, denotes its limiting frequency 
at infinity then, if GM/rc2 < 1 

Hence there will be an apparent red-shift of the frequency of the photon (as observed 
at infinity) given by 

6 V  GM 
V Y C 2  

6X GiW 
h YC2 

- =  --- 

correspondingIy 

- = -  

where h denotes wavelength. This is the same result as given by General Relativity. 
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